H(t)=-16(t)^2+144

Simple and best practice solution for H(t)=-16(t)^2+144 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(t)=-16(t)^2+144 equation:



(H)=-16(H)^2+144
We move all terms to the left:
(H)-(-16(H)^2+144)=0
determiningTheFunctionDomain -(-16H^2+144)+H=0
We get rid of parentheses
16H^2+H-144=0
a = 16; b = 1; c = -144;
Δ = b2-4ac
Δ = 12-4·16·(-144)
Δ = 9217
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{9217}}{2*16}=\frac{-1-\sqrt{9217}}{32} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{9217}}{2*16}=\frac{-1+\sqrt{9217}}{32} $

See similar equations:

| 2x-23=122x−23=12 | | 3×+2y=16 | | 20h+104=224 | | u=6.5 | | 1.25n+250=4n | | 3x-2x+4x=-4 | | x/15=10/15 | | 12b-120=2400 | | -4(x+3=-12 | | 2{x-5}+7=53 | | 8(k+6=3(k+33) | | 5n=120;n= | | 15.00xY=96.00 | | 3(6x+3)=-17 | | 7x-5=343′ | | 30+3x=48 | | 8x-16=-16 | | 60=1.5x+3 | | 36+9x=10x | | 262=-x+4 | | 6+3x=2(−x+9)−47 | | 238-v=64 | | -y+159=80 | | 1.1g+5=1.5g+3 | | 6x+9=9x+9-3x | | 7m+15=13m-9 | | 7x+3=10x+3-3x | | 4y+1=45 | | (-k^)-2(-k)-15=0 | | 3a+7=-33 | | 4x+36=7x-3 | | 5b-14=7b+12 |

Equations solver categories